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Abstract: Big data has a potential to unlock novel groundbreaking opportunities in the power grid sector that enhances a multitude
of technical, social, and economic gains. The currently untapped potential of applying the science of big data for better planning
and operation of the power grid is a very challenging task and needs significant efforts all-around. As power grid technologies
evolve in conjunction with measurement and communication technologies, this results in unprecedented amount of heterogeneous
big data sets from diverse sources. In particular, computational complexity, data security, and operational integration of big data
into power system planning and operational decision frameworks are the key challenges to transform the heterogeneous large
dataset into actionable outcomes. Moreover, due to the complex nature of power grids along with the need to balance power in
real time, seamless integration of big data into power system planning and operations is very critical. In this context, big data
analytics combined with grid visualization can lead to better situational awareness and predictive decisions. This paper presents
a comprehensive state-of-the-art review of big data analytics and its applications in power grids, and also identifies challenges
and opportunities from utility, industry, and research perspectives. The paper analyzes research gaps and presents insights on
future research directions to integrate big data analytics into power system planning and operational decision framework. Detailed
information for utilities looking to apply big data analytics and details insights on how utilities can enhance revenue streams
and bring disruptive innovation in the industry are discussed. More importantly, general guidelines for utilities to make the right
investment in the adoption of big data analytics by unveiling interdependencies among critical infrastructures and operations are
also provided.

1 Introduction

Over the past few years, the adoption of big data analytics in banking
[1, 2], health care [3, 4], internet of things (IoT) [5, 6], communica-
tion [7, 8], smart cities [9, 10], and transportation [11] sectors have
demonstrated huge potential for innovation and business growth.
The transition of power grids to ‘smart grids’ around the world
can be characterized with larger datasets being generated at an
unprecedented rate with localized integration, controls, and appli-
cations. It is highly anticipated that there is a great potential for the
application of big data to the current and future power grids [12].
Currently, power grids incorporate all sorts of innovations in mea-
surement, control, communication, and information science to effec-
tively operate electric power systems that deliver affordable, reliable,
sustainable, and quality energy to end users. Power grids around
the world are also deploying a massive advanced metering infras-
tructure (AMI) and measurement technologies such as smart meters
and phasor measurement units (PMUs) to collect system-wide high-
resolution electrical measurements [13–15]. These electrical data
comprising of measurements, along with other non-electrical data
(e.g., weather, traffic, etc.), if effectively utilized in coordination,

will revolutionize the operation of electric power grids. The effec-
tive utilization of data enhances observability of power grids that
includes system-wide grid conditions, behavior of end users, and
renewable energy availability—all crucial information for reliable
and economic operation of the electric power grids.

Increased deployment of the measurement devices along with
model based data (e.g., simulations) and data from non-electrical
sources are resulting in unprecedented amount of widely varying
data in electric power grid [16]. A typical distribution utility deals
with thousands of terrabytes (TB) of new data every year [17]. As
shown in Fig. 1, these data come from various sources including
smart meters, PMUs, µPMUs, field measurement devices, remote
terminal units (RTUs), smart plugs, programmable thermostats,
smart appliances, sensors installed on grid-level equipment (e.g.,
transformers, network switches), asset inventory, supervisory con-
trol and data acquisition (SCADA) system, geographic information
system (GIS), weather information, traffic information, and social
media [17].

Big data in smart grids are heterogeneous, with varying reso-
lution, mostly asynchronous, and are stored in different formats
(raw or processed) at various locations. For example, typical smart
meter data are energy consumption collected every 15 minutes and

IET Research Journals, pp. 1–15
c© The Institution of Engineering and Technology 2019 1



 

BIG  

DATA 

Smart Meters 
PMUs s/ 

µPMUs s/ 

Sample Value 

GIS 

Traffic 

User r/ Operators  

Input 

Weather 

Network  

(Power/Communication) 

Simulation 

Smart  

Appliances s/ 

sensors 

SCADA 

SField  

Measurement  

Units s/ RTUs 

Asset Inventory 

Social  

Media 

Fig. 1: Sources of non-electrical and electrical big dataset in smart
grids.

are stored in billing centers. One million smart meters installed in
a utility results is nearly 3 TB of new energy consumption data
every year. Whereas PMUs measure high-resolution voltage and cur-
rent in the power grid and report at a 30-60 times per second rate
as time-synchronized phasors to phasor data concentrators (PDCs)
located at the sub-station level or at control centers. PMUs result in
nearly 40 TB of new data per year for a typical utility [17]. These
big data carry considerable amount of information that enables
novel information-driven control algorithms. This in turn can bring
revolutionary transformations to the ways grids are planned and
operated [18, 19]. Big data in smart grids allows improvisation in
existing operation and planning practices at all levels, i.e., gener-
ation, transmission, distribution, and end users [17–20]. It enables
new opportunities in controlling the grid assets, distributed energy
resources (DERs), and end users’ energy consumption holistically
in real time, which were not possible in conventional grids due to
limited measurement and control capabilities.
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Fig. 2: Key characteristics of smart grid big data.

As shown in Fig. 2, big data in smart grid are characterized by
high volume (in the order of thousands of terrabytes), wide vari-
eties (structured/unstructured, synchronous/asynchronous), varying
velocity (e.g., real-time, second/minute/hour resolutions), veracity
(inconsistencies, redundancies, missing data, malicious informa-
tion), and values (e.g., technical, operational, economic) [21, 22].
As such, it becomes necessary to process large volume and varieties
of both real-time and historical data to extract meaningful informa-
tion in order to make data-driven decisions [16]. Therefore, big data
analytics will play a critical role not only for the efficient operation
of future electric grids, but also for the development of proper busi-
ness models for the key stakeholders (e.g., electric utilities, system
operators, consumers, aggregators) [23, 24].

Mega-corporations such as Google, Microsoft, Amazon have
matured data-mining and processing tools that allow for quick and
easy processing of large amounts of data for a wide variety of appli-
cations [25]. Therefore, data organizing and storage are typically
well established in a generic sense. However, big data analytics is
more than just the data management; it is rather an operational inte-
gration of big data analytics into power system decision-making
frameworks [26]. Therefore, the key challenge of big data analyt-
ics is to turn large volume of raw data into actionable information
by effectively integrating into power system operational decision
frameworks [27]. Efficient deployment of big data into electric utili-
ties plannign and operation can lead to multiple benefits including
improved reliability and resiliency, optimized resource manage-
ment/operations, improved operational decision, and increased eco-
nomic benefits to customers, utility, and the system operators [28].
As smart grid data increases exponentially in the future, utilities must
envision ever-increasing challenges on data storage, data processing,
and data analytics. Even though many electric utilities have realized
that deployment of big data analytics is a must and not a choice,
for future business growth and efficient operation, implementation
of big data analytics in utility framework is lagging [29]. Therefore,
there is a need of comprehensive study to investigate current chal-
lenges, value proposition to stakeholders (e.g., consumers, utilities,
system operators), operational benefits, and potential path forward
to deploy big data analytics in power grids [30].

This paper presents insights on big data in smart grid from several
different perspectives - research, electric utilities, and industries per-
spectives. First, we identify current challenges to transform big data
in smart grid into actionable information, and then present future
directions for its operational integration into utility decision frame-
works. In fact, detailed insights to tap currently hidden potential
of big data analytics to benefit utility customers, electric utilities,
and system operators are presented. Therefore, this study details
information and factors to consider for electric utilities and system
operators looking to apply big data analytics and provides insights
on how utilities can deploy big data analytics to realize increased
revenues and operational benefits. Furthermore, this paper provides
insights on how effective integration of big data analytics to utility
decision frameworks helps to make right decision at right time and
location by unveiling the interdependencies among various critical
infrastructures and operations.
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Fig. 3: Overall organization of the paper.

The remainder of the paper is structured as depicted in Fig. 3.
First, comprehensive analysis of the big data from utility and indus-
try perspectives is presented in Section 2. Next, in Section 3, key
challenges for integration of big data to smart grids are detailed.
Potential solutions and methods of big data analytics are detailed
in Section 4. Section 5 presents existing big data analytics archi-
tectures and platforms suitable for smart grid applications. Next in
Section 6, key power system application areas of big data analytics
are detailed. Finally, future research directions for big data appli-
cation to smart grids are presented in Section 7, and the paper is
concluded in Section 8.

2 Utility and Industry Perspectives

As depicted in Fig. 1, smart grid is associated with vast amount
of data from various sources, including power system operation
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(generation, transmission and distribution, customers, services and
markets), energy commodity markets (electricity markets, gas, and
oil), environment, and weather. Those data are characterized by
diversity of its sources, growth rate, spatio-temporal resolutions, and
huge volume. It is anticipated that future power grids will gener-
ate heterogeneous data at a higher rate than ever. On the one hand,
these vast amount of data create several challenges for data han-
dling, processing, and integration to utility decision framework. On
the other hand, these large datasets provide significant opportuni-
ties for better monitoring, control, and operation of electric grids. In
particular, this can help electric utilities to make the system more
reliable, resilient, and efficient. Therefore, big data analytics is per-
ceived as a foundation to optimize all current and future smart grid
technologies.

2.1 Electric Utility Perspective

Electric utility is a very complex structure having close depen-
dencies and interactions among communications, IoT, and human
factors [31]. Recent concerns on increased security and reliability of
critical infrastructure are leading to the need of integrated energy
system, which integrates various critical infrastructure, including
electrical, gas, thermal, and transportation [32–34]. Therefore, future
power grid management systems will be processing overwhelming
amounts of heterogeneous data [35]. As illustrated in Fig. 4, individ-
ual devices and functional units can generate thousands of TB data
annually. Considering large number of such units (e.g., consumer,
sensors, substation) and grid functions (e.g., home energy manage-
ment, distribution management, DER management), electric utilities
have to handle millions of TB data, which continues to increase over
time. Therefore, utilities must take a deep dive into what increas-
ing data means to their traditional operations, and have to make
necessary strategies to create value from those vast amount of data
[36].

Fig. 4: Pattern of big data volume in electric utilities [35].

A recent survey conducted with 1,000 electric utility and industry
respondents across 10 countries depicted that majority (80%) of the
electric utilities realize big data analytics as crucial for future smart
grid and source of new business opportunities [37]. Recently, Cana-
dian Electric Association has also identified big data as one of the
key drivers for grid modernization to meet their 2050 vision [38].
In addition, Canada has initiated a concept of open data set among
multiple utilities and service provides in seven Canadian cities in an
effort to maximize the value of big data [39]. However, even though
utilities recognize big data analytics as an unavoidable task for the
future power grids, electric utilities are still reluctant for its imple-
mentations. Fig. 5 illustrates an overview of current status of electric
utilities in terms of big data implementations [22]. It can be observed
that only 20% of the utilities have implemented big data analytics to
some extent. However, it is worth mentioning that even those 20%
utilities who have implemented big data are tapping only a fraction
of potential [37].

In addition, as electric utilities are heavily regulated organiza-
tions, they are more focused on system reliability rather than trying
a new technology; therefore, they are somewhat reluctant to the
implementation of big data analytics. As depicted in Fig. 6, lack of
management support, skill shortage, data management issues, and

Fig. 5: Current utility status of big data implementations [37].

lack of proper business models are primary factors that are hold-
ing the utilities back from the deployment of big data analytics.
However, it should be noted that data storage and data management
challenges have successfully been addressed in other industries (e.g.,
banking, IoT). Operational integration of big data to utility decision
framework and its value proposition to different stakeholders (e.g.,
utilities, system operators, aggregators, consumers) and professional
training are the key challenges to be considered.

Increasing need of improved reliability and resiliency of the sys-
tem and tighter boundaries from regulating entities are also steadily
forcing the utilities to deploy big data analytics [34]. With big data
analytics, electric utilities can exploit behind the meter resources and
obtain various grid services at lower cost. More importantly, big data
analytics help to reduce levelized cost of electricity (LCOE) not only
by helping to make better investment decision at the right time and
right place, but also by unveiling insights and value proposition of
additional revenue streams (e.g., better participation to energy/power
markets, grid services). Therefore, similar to disruptive innovation
that big data analytics brought to other industries, it can transform
utility industry by expanding business volume and revenue streams.

2.2 Industry Perspective

Even though the information technology related companies have
achieved substantial success in the field of big data analytics, elec-
trical industries are at the beginning stage to deploy big data. A
few industries including Siemens, GE, ABB, OSI-Soft, and so on
are developing big data platform and analytics for power grids. An
account of a few commercially available platforms is provided here
as a sample only and by no means is intended to be exhaustive.
Siemens has developed a big data platform, called EnergyIP Ana-
lytics, which adds big data to smart grid application and provides
insights on management of big data for providing various grid ser-
vices to electric utilities and grid operators [41]. Siemens is currently
integrating utility operations and data management technologies that

26%
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Data

Management

Data complexity

Data access issues

Data privacy issues
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Fig. 6: Current identified barriers for big data implementations [37].
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Fig. 7: High-level overview of GE big data analytics platform [40].

could potentially be tapped for grid data analytics. This grid ana-
lytics platform can allow utilities to utilize big data for multiple
functionalities, including home energy management, grid energy
management, and predictive/corrective controls [41]. EnergyIP Ana-
lytics has already been used by more than 50 utilities with a total of
28 millions installed smart devices [42].

Similarly, GE has developed an industrial IoT platform, called
PREDIX, to consolidate data from existing grid management sys-
tems, smart meters, and grid sensors [40]. In addition, Grid IQ
Insight, a cloud based big data analytics architecture which utilizes
PREDIX platform, is developed to integrate big data analytics to
grid applications [43]. Native data collected from Grid IQ Insight are
stored in datalake that could be tapped for several grid applications
[44]. In fact, these initiatives and developments support multiple
grid applications ranging from real-time grid monitoring, distribu-
tion automation, home energy management, and ancillary services.
As illustrated in Fig. 7, a concept of edge computing, whereby com-
putational intelligence is connected at the edge of the data source,
has introduced by GE in its Grid IQ Insight.

ABB is integrating cloud computing and big data analytics
intended for future power grid applications. ABB has developed an
intelligent big data platform, called ABB Asset Health Center, which
provides solutions for processing big data for smart grid applications
[45]. In fact, ABB’s Asset Health Center embed equipment monitor-
ing and systems expertise to establish end-to-end asset management,
business processes for reducing costs, minimizing risks, improving
reliability, and optimizing operations across the electric utility [45].
In addition, OSI-Soft PI system, which is one of the most widely
deployed database and analytics system, has been contributing to
unveil the power of big data analytics to electric utilities. Smart asset
management platform has introduced by OSI-Soft for the purpose of
real-time monitoring of asset health [46].

The aforementioned industries are offering utilities a way to gain
a core understanding of what is the state of grid devices, and devel-
oping a launching pad for smart grid big data analytics applications
over time. The next step for the industries is to effectively integrate
prognosis and diagnosis into big data analytics framework so as to
facilitate utilities to provide situational awareness, informed predic-
tive decisions, condition monitoring, health management of critical
grid infrastructure, and supporting grid functionalities.

3 Key Challenges for Big Data Analytics

This section presents key challenges in deploying big data analytics
to future power grids.

3.1 Data Volume

The amount of data being generated by electric utilities is increas-
ing at an exponential rate. Therefore, big data challenges, such as
data storage, data mining, data processing, data querying, data index-
ing will increase in unprecedented manner in the future. Due to
increased deployment of intelligent devices in consumer and their
active engagement on different grid services, the data management
expands also to the consumer level. Even at the consumer levels, data
volume from various devices (e.g., smart meter, electric vehicles,
inverters) will be in the order of hundreds of TB [35]. Therefore,

effective management of huge volume of data is becoming increas-
ingly challenging issues for utilities. New innovative solutions, such
as distributed and scalable computing architecture are necessary
[47, 48]. Moreover, dimensionality reduction, a reduced represen-
tation of the data set that is much smaller in volume, yet closely
maintains the integrity of the original data, can significantly reduce
data complexities [49]. Table 1 summarizes the key challenges,
potential impacts, and potential solutions of deploying big data to
power grid.

3.2 Data Uncertainty

Data uncertainty is one of the defining characteristics of real-world
smart grid data and it stems basically from lack of data or an incom-
plete understanding of the operational context. Since data quality,
which is attributed by accuracy, completeness, and consistency of
data, is one of the biggest concerns in smart grid; the quality of
utility decision depends entirely on the quality of data. However,
since real-world data are highly susceptible to errors due to noises
and missing/inconsistent data, data cannot be acquired with 100%
certainty. Major causes of data uncertainties and loss of data qual-
ity stem from sensor inaccuracies and imprecision, communication
latencies/delays, cyber-attack, physical damages of equipment, time
unsynchronized data, missing/inconsistent data, noises, etc. Those
uncertainties may result from various reasons, for instance, readings
of sensors are uncertain because of sensor aging or malicious attacks
during data acquisition and control processes. This requires inno-
vative techniques to deal with data mining and data analytics tech-
niques [50]. Probabilistic data analytics and data mining, whereby
data uncertainties are modeled as a stochastic process within certain
limits, are recently been deployed to deal with data uncertainties
in [51]. Similarly, data preprocessing techniques (e.g., data clean-
ing, data integrity, data conditioning) are often used for identifying
and removing noisy data, filling in missing values, resolving redun-
dancies, correcting inconsistencies, and smoothing out noises and
outliers [52]. Data cleaning deals with the missing values, smooths
out noises, identifies outliers, and corrects inconsistencies within the
data.
3.3 Data Security

Smart grid data mostly involve consumer privacy information, com-
mercial secrets, and financial transactions. Therefore, data security
(e.g., privacy, integrity, authentication) are very crucial [67].

3.3.1 Data Privacy: Data privacy of user is a very critical
security concern as the power consumption of consumer normally
provides insights on their behavior [68]. Data aggregation is one of
the common approach to address data privacy issues. Different tech-
niques such as distributed aggregation [53], differential aggregation
[54], and aggregating with storage [55] are recently developed to
address data privacy issues.

3.3.2 Data Integrity: Data integrity is primarily used to pre-
vent unauthorized modification of information. However, due to
close interdependencies between power and communication infras-
tructure, the power industry is also susceptible to increased
cyber/physical-attacks [69]. Those integrity attacks not only delib-
erately modify financial transactions, but also severely mislead the
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Table 1 Summary of Key Challenges to Apply Big Data to Smart Grid

Challenges Possible Impact Potential Solution
Data Volume Need of increased storage and computing resources Dimensionality reduction, Parallel computing,

Edge computing, Cloud computing, pay-per use
[47–49]

Data Quality Lack of complete inofrmation, misleading decision Probabilistic and storchastic analysis [50, 51], data
cleaning (e.g., dealing with missing values, smooth
out noises, outliers, and inconsistent data) [52]

Data Security Vulnerable to malacious attack, compromise con-
sumer privacy and integrity, mislead operational
decision and financial transactions

Data anonymization (e.g., data aggregation [53–
55], data encryption [56–58], P2DA [59])

Time Synchronization Mislead operational decision, wrong interpretation
of data, bad diagnostic of past events

Synchronize devices based on same radio clocks or
satellite receivers [60, 61]

Data Indexing Computational complexity, long processing time Deploy new indexing techniques such as R-trees, B-
trees, Quad-trees [62–66]

Value Proposition non-acceptance by stakeholder, delay deployment
of big data,

Quantifying both technical and economic values to
key stakeholders, namely consumer, system opera-
tor, utility.

Standards and Regulation Interface challenges among various computing,
storage, and processing platforms, delayed deploy-
ment

Regulatory entity define guidelines about data shar-
ing/exchange, and standards should technically
ensure regulatory aspects.

utility operational decisions [70]. Privacy-preserving data aggre-
gation (P2DA) scheme can ensure data integrity through a digital
signature or a message authentication code [59].

3.3.3 Data Authentication: Smart grid data requires authenti-
cation as a basis to distinguish legitimate and illegitimate identity.
Data authentication is not only necessary to preserve user privacy,
but also to ensure data integrity [56]. Therefore, authentication
including encryption, trust management, and intrusion detection are
important security mechanisms that can prevent, detect, and mitigate
network attacks [57]. Different techniques such as data encryption
and signature generation are normally used for data authentication
and security management in smart grids [58].
3.4 Time Synchronization

With the increasing need of real-time control and communication in
smart grid, time synchronization is becoming a key concern. Cur-
rently, synchrophasors or PMUs provide time synchronized data,
which utilize synchronization based on radio clocks or satellite
receivers. Time synchronized data allows analysts to draw mean-
ingful connections between events and aids both forensic analysis
of past events, near real-time situational awareness, and informed
predictive decisions [60]. Forensic determination of a sequence of
past events (e.g., what actually tripped, what was the initiating event)
and real-time situational awareness of the grid’s health can be very
powerful to provide preventive or remedial solution. However, com-
munication, storage, and analysis of streams of data from most of the
distribution system devices and customers are currently unsynchro-
nized. As unsynchronized data poses potential risk of misleading
decision, data should be time synchronized with respect to same time
reference.

3.5 Data Indexing

The smart grid data also posses issues on data indexing and query
processing. The existing methods use generic tools such as SQL
server and SAP for query purposes; however, these may not suffice
from smart grid application point of view, particularly if real-time
applications are sought from the big data. Therefore, advanced data
indexing and query-processing algorithms will play critical roles in
smart grid big data analytics. State-of-the-art data indexing tech-
niques including variants of R-trees, B-trees, and Quad-trees would
definitely be useful for efficiently indexing the big data in smart grids
[62–66].
3.6 Standards and Regulation

There are a few standards information models and communication
protocols (e.g., IEC 61850, IEC 61850-90-7, IEC 61970/61968,

Fig. 8: Global utility analytics spending [72].

IEEE 1815, IEEE 2030.5) for smart grid interoperability [71]. How-
ever, none of the efforts are being yet made on interoperability
among big data analytics platforms, architectures, and grid opera-
tions frameworks. Instead, different utilities are implementing big
data analytics with different storage, computing, processing plat-
forms. Such diversified use of protocols, architectures, and platforms
for big data analytics will not only limit its potential, but also delay
the adoption of big data analytics to power grid [8]. Therefore, to
take full advantage of big data application to smart grid, there is need
of data sharing and information exchange among different utilities
and system operators. Since electric utilities usually do not share
data/information with each other, regulatory framework should be
established to facilitate data sharing and unify their efforts. In order
to synchronize the efforts from utility, industry, and academia, there
is a strong need to build standards for big data analytics architecture,
platforms, and interoperability.

3.7 Business Models and Value Proposition

To successfully deploy big data analytics in smart grids, proper busi-
ness models should be developed [25]. Even though other industries
(e.g., Google, Facebook, Amazon) disruptively transformed their
business via big data analytics, electric utilities are still in the initial
stage. The business models should be justified on the basis of mar-
ket opportunity/volume, required investment, and values to different
stakeholders. Recent research has estimated the value of the global
utility data analytics market at a cumulative $20 billion between
2013 and 2020, growing to nearly $4 billion a year by 2020 [72].
This shows huge market potentials for big data analytics to electric
utilities.

As shown in Fig. 8, the Utility Analytics Institute has predicted
that data-related costs are continuously decreasing. Over the past 30
years, the cost to store data has been cut in half every 14 months or
so [72]. For instance storing a gigabyte of data in 1995 cost about

IET Research Journals, pp. 1–15
c© The Institution of Engineering and Technology 2019 5



$11,200, by 2000 it was $11, and today costs mere three cents [72].
The falling costs of data storage and data management is making the
real-time data collection and storing economically feasible, thereby
providing significant opportunities for utilities to make successful
business models. However, utilities require a clear understanding
of where long term economic and technical values of big data lie,
and should develop proper business models for all stakeholders,
including utilities, system operators, and customers.

4 Big Data Stages and Solution Approaches

Organizing and storing big data in general is well understood.
Mega-corporations (e.g., Google, Microsoft, Amazon) have mature
data-mining and processing tools that allow quick and easy pro-
cessing of large amounts of data. However, data management is
more than just the technical challenges of data handling. Instead,
data analytics should be effectively integrated into utility strategies,
operational frameworks, and decision-making process. The follow-
ing sections detail methodological stages and solution approaches
for big data analytics.

4.1 Big Data Methodological Stages

As shown in Fig. 9, key steps for big data analyses include data
acquisition, data storage, data analytics, and operational integration,
which are described in detail in the following subsections.

Data 

Ingestion/

Acquisition

Data 

Storage
Data Analytics

Applications

/Operational 

Integration

Fig. 9: Key stages of big data analytics.

4.1.1 Data Acquisition: Data acquisition primarily deals with
collection of data from multiple heterogeneous sources in different
formats and features. Since power grid data often contains private
information and personal behaviors of consumers, data confiden-
tiality and security are critical aspects within the data accessing
and transmitting. In order to ensure the data confidentiality and
security during data acquisition, data encryption-decryption, and
aggregation-disaggregation approaches are generally employed [73].
Those approaches preserve the sensitivity and privacy within the data
and often restrict unauthorized access of data [74].

4.1.2 Data Storage: Data storage primarily belongs to data
management (e.g., data fusion, data integration, data transform-
ing) within data repositories [75]. Data storage not only need to
manage large amount of widely varying data collected in different
forms/formats, but also have to deliver data to multiple analyt-
ics platforms having different requirements (e.g., temporal/spatial
resolutions, formats). Recently, data-centric storing and routing tech-
nologies have widely been employed for big data storage, whereby
data is defined and routed referring to their names instead of the stor-
age node’s address [76]. Each data object has an associated key and
each working node stores a group of keys. This makes the data stor-
age flexible and scalable. A novel approach for effective storage of
time-series data is proposed to reduce the computation expense [77].

4.1.3 Data Analytics: Data analytics is designed to identify
hidden and potentially useful information and patterns within
large dataset that can be transformed into an actionable out-
comes/knowledge. It utilizes various algorithms and procedures
(e.g., clustering, correlation, classification, categorization, regres-
sion, feature extraction) to extract valuable information from the
dataset [78–81]. Depending on the potential use cases, data analyt-
ics involves one or more of the descriptive, diagnostic, predictive,
and prescriptive analytics. As shown in Fig. 10, descriptive models

are often used to describe operational behaviors of grid and cus-
tomers, whereas diagnostic models analyze the operating conditions
and decisions made by the grid operators. The diagnostic model is
focused on identifying the causes for an event, thereby is suitable
for taking remedial action. As the key objective of data analytics
is to provide preventive solution, predictive models are often nec-
essary to forecast operating conditions and future decisions [82].
Prescriptive analysis, on the other hand, are designed for providing
longer term insights to utilities in making strategic operational and
investment planning. Please note that Section 6 provides details of
potential applications of big data in various smart grid and power
system applications. Therefore, the following paragraphs provide a
brief overview of key smart grid applications corresponding only to
selective data analytics techniques.
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Fig. 10: Summary of different analytics techniques and their key
applications.

From the smart grid application perspective, data analytics can
be categorized into four broad categories as illustrated in Figure 11.
Event analytics primarily covers diagnosis/detection of the power
systems events such as faults and outage managements [83–89]. In
addition, the event analytics also encompass descriptive analysis of
prior power system events using various techniques (e.g., classi-
fication, filtering, correlation) [83–85, 89]. Detection of abnormal
operating conditions including fault detection [83–85], system out-
age detection [86–88], detection of malicious attacks [84], and theft
of electricity [89] are some of the key application areas for event
analytics.

State and operational analytics primarily include a combina-
tion of diagnostic, predictive, and perspective analytics. As illus-
trated in Figure 11, the key power system application of the state
analytics includes state estimation [83, 90], system identification
[86, 91, 92], and grid topology identifications [90, 93–96]. Simi-
larly, the key power system applications for operational analytics
include energy/load forecast [97–99], energy management and dis-
patch of resources [87, 88, 96, 100]. Similarly, customer analytics
also includes one or more of the descriptive, diagnostic, predic-
tive, and perspective analytics depending on the specific applications
and use cases. The key power system application that falls under
the customer anlaytics include customer classification/categorization
[95, 101], correlation between consumer behavior and energy con-
sumption patterns [89, 97, 99, 102], and demand response [100,
103].

Please note that data correlation, data classification/categorization,
and pattern recognition are commonly used algorithms for the afore-
mentioned smart grid analytics (as shown in Fig. 11). The following
section briefly highlights those algorithms.

Data Correlation: Correlation is a well-known statistical tech-
nique to determine relationship and compatibility among different
datasets. As smart grid data are closely related to various factors
(e.g., grid events/disturbances, weather, grid operations, electricity
prices), correlation analysis provides key insights on data and their
interdependencies [104]. Conventionally, data correlation has widely
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Fig. 11: Application specific analytics applied to smart grid.

been used for forecasting and planning of power systems. However,
with the emergence of big data, the correlation analysis has been
focused on big data domain as well [105, 106].

Data Classification and Categorization: Data classification is
the process of organizing data into meaningful categories so as to
make it easy to find and retrieve information. In smart grid, data
are normally categorized on the basis of time, importance, and pri-
vacy requirement [107]. Artificial neural network and self organizing
mapping are most commonly used models for data classification and
categorization in smart grid big data [108]. In addition, K-means,
hierarchical clustering, Fuzzy C-means are often implemented for
data categorization [109, 110].

Feature Extraction: Feature extraction is one of the important
step of data mining that is intended not only to translate data into
meaningful outcomes, but also to identify the data attributes affect-
ing those features [111]. As large volumes of data from the sensors
and intelligent devices installed around the smart grid often con-
tain noise, incompleteness, and redundancies, feature extraction play
critical roles [112].

4.2 Potential Solutions for Big Data Analytics

Due to large volume and variety of data in smart grid, acquiring and
processing all data is technically inefficient from cost, complexity,
and storage requirements. The following approaches are designed
to make the big data analytics efficient and effective for smart grid
applications.

4.2.1 Dimensionality Reduction: Dimensionality reduction is
one of the effective techniques used to provide a reduced and repre-
sentative version of large dataset [47, 113]. Key challenge is to find
the optimum reduction on dataset that can provide the same infor-
mation as the original dataset [113]. Some literature has proposed
online dimensionality reduction on synchrophasor measurements
using random projection approach [114]. Even though the random
projection is simple, scalable, and provides faster execution, it has
not been sufficiently explored in power systems.

4.2.2 Distributed and Edge Computing: Conventional power
system utilizes a centralized architecture for data acquisition, ana-
lyzing, and processing. Such framework requires huge exchange
of information flow among various intelligent devices within the
smart grid [49]. This is inefficient not only from communication
perspective, but also from data storage, security, and data handling
perspectives. Therefore, the future power grid should implement
distributed computing and data mining architecture to reduce the
computational burden at the centralized processor [115]. Recently,
edge computing, a method of optimizing computing performance
by processing data at the edge of the network near the data source,
has been gaining attention in big data applications [7, 116]. Edge
computing primarily relives the communication bandwidth needed
between the data source and central processing system, whereas
distributed computing reduces data handling burdens by parallel
processing of the information [117, 118]. Recently, some litera-
ture presents distributed data analysis and control techniques for
various applications including load prediction and volt-var con-
trol [115, 119]. Distributed and edge computing make the solution
scalable, less affected by peer failures, require less computational
burden, and reduced communication resources [6, 76].

4.2.3 High Performance Computing: Modern electric grids
require real-time monitoring, control, and operation of large num-
ber of resources. As most of the real-time operation and control
applications require fast data processing, we need high performance
computing (HPC) to be able to integrate big data analytics to util-
ity control and operation [120]. Even though the computational
capacity of the HPC has increased significantly in the past few
years, HPC based computation is still not economically viable to
several applications [121]. As such, data analytics based on task
parallelism can provide economic and efficient solutions for power
system computational issues [122].

4.2.4 Cloud Computing: Cloud computing approach is a
promising solution for computation intensive grid applications
because it uses computational resources based on demand [123].
Cloud computing has distinct advantages, such as scalability, flex-
ibility, distributed computing, parallelization, fast retrieval of infor-
mation, interoperability, virtuality, and extensibility. Recently, cloud
computing has been applied to energy conscious scheduling in smart
grid [124–126]. ISO New England has successfully deployed this
concept on Amazon Web Services [127]. The deployment of cloud
computing to smart grid brings several benefits, including increased
fault tolerance and security due to multi-location data backup [128].
Moreover, the cloud computing helps utilities to realize flexibility,
agility, and efficiency in terms of saving cost, energy, and resources
[29]. Many smart grid applications, including advanced metering
infrastructure, SCADA, energy management system, and distribu-
tion management systems, can be greatly benefited by application of
cloud computing approach.

4.2.5 Metamodeling: The increase in complexity of large scale
simulation models often lead to increased run times. Consequently,
the simulation of large interconnected networks can benefit from
simulation metamodeling to reduce the runtime with acceptable
accuracy. Simulation metamodeling is to build a model of a sim-
ulation models in order to reduce the run times. The suitability of
the model is evaluated based on the required computational expense,
reliability, and accuracy. Typically this evaluation uses Bootstrap
error and the predicted residual error sum of squares statistic to
efficiently compute the standard error and bias [129]. The imple-
mentation of such algorithms and the software environment are
extremely important to develop computational efficient and accurate
models [129]. Metamodels can be applied for energy and market
forecast in power systems, and smart grid simulations [130–132].

5 Big Data Architecture and Platforms

This section describes common architecture and platforms for big
data analytics, and presents insights on application of those architec-
tures and platforms in power systems.

5.1 Big Data Architecture

Currently, there are no standard big data analytics architectures
developed for power grid applications [133]. Therefore, clear under-
standing of big data architecture is required to identify how big
data integrates with the existing power system control and oper-
ational architecture, what are the essential characteristics of big
data environment, how they differ from traditional computational
environments, and what scientific, technological and standardization
challenges are needed to deploy big data solutions [134]. The follow-
ing subsections describe common big data analytics architectures.

5.1.1 General Electric Grid IQ Insight Architecture: Grid IQ
insight is a big data analytics architecture which works based on
the foundation of PREDIX data analytics platform. In fact, PREDIX
is an industrial IoT based platform [40] which was developed for
variety of applications including power system. Grid IQ Insight is
a cloud based horizontal architecture consisting of four layers as
shown in Fig. 12. The bottom most layer is basically a physical layer
which consists of utility assets, operational systems, and external
data, whereas the second layer is primarily a cloud based API and
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utility specific data layer (e.g., analytics, dashboards). The third layer
primarily includes grid applications, while the forth layer focuses on
the visualization and operational integrations.
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Fig. 12: GE Predix platform for big data analytics [40].

5.1.2 Booz Allen Hamilton Architecture: The Booz Allen
Hamilton is a cloud based horizontal reference architecture con-
sisting of four layers [135]. The top layer deals with the human
insights and action, and establishes data interfaces and visual-
izations, whereas the second layer is designed for analytics and
services, thereby consists of tools and algorithms required for mod-
eling, analysis, and simulations of data. The third layer deals with
data management and is designed to deal with all heterogeneous
data sources. The bottom layer is infrastructure layer which stores
and manages smart grid data.

5.1.3 IBM Big Data Architecture: IBM big data architecture is
a four vertical layered reference architecture, where the left most
layer deals with data sources, and the second layer consists of
big data platforms and capabilities [136]. Similarly, the third layer
deals with data analytics and customer insights, and the last layer
is designed to integrate data analytics results for various opera-
tions. Lockheed Martin energy data analytics architecture, as shown
in Fig. 13, is an example of IBM vertical reference architecture.
However, unlike the case of IBM architecture, the Lockheed Martin
architecture has only three layers.

Fig. 13: IBM based Lockheed Martin big data analytics architecture
for smart grid applications [35].

5.1.4 SAP Big Data Architecture: This is a combination of
horizontal and vertical reference architectures developed by SAP
[134]. As shown in Fig. 14, vertical layers include data sources
and data ingestion, while horizontal layers include applications, real-
time data accelerated analytics, and data management (e.g., storage,
data processing and deep analytics).
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Fig. 14: SAP reference architecture for big data processing [134].

5.1.5 ORACLE Big Data Architecture: As shown in Fig. 15,
Oracle big data architecture also consists of horizontal as well
as vertical layers. The vertical layers include data sources, data
acquisition, data organization (to ensure data quality for analyti-
cal operations), data analytics, decision making (recommendation,
alerts, dashboards), and data management (e.g., storage, data secu-
rity, governance) [137]. Similarly, horizontal layers include technol-
ogy platforms and integration layers for operational integration to
electric utility operational framework.

Fig. 15: Oracle big data analytics reference architecture [137].

It is worth mentioning that there are several other architectures
(e.g., Big Data Ecosystem Reference Architecture, GPUMKLIB big
data Architecture Framework, National Big Data Reference Archi-
tecture) developed for big data analytics in IoT sectors. Different
variations of those reference architectures are being implemented on
power industry, however, standard big data architectures for power
grids have not yet been developed.

5.2 Big Data Platforms

The following subsections presents commonly used platforms for
big data analytics and compare their performance in Table 2.

5.2.1 Hadoop: Apache Hadoop is an open source framework
for storing and processing large datasets using MapReduce program-
ming model [143]. The Hadoop consists of storage part (known as
hadoop distributed file systems (HDFS)) and processing part (known
as MapReduce programming model) [138–140]. Primarily, Hadoop
splits files into large blocks and distributes them across nodes so
as to process data in parallel. Due to distributed storage structure,
HDFS not only ensures high availability, but also high fault tolerance
against hardware failures. OSI-Soft, which is one of the widely used
database and data analytics platform in electric utility, uses Hadoop
for performing data analytics in PI system.
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Table 2 Comparison of various big data analytics platforms.

Platform Data
Scaling

Scalability Fault
Tolrance

I/O Performance Application

Hadoop Horizontal Yes Yes Limited Batch Processing [138–140]
Spark Horizontal Yes Yes Moderate Batch and real-time processing [141]
Storm Horizontal Yes Yes Moderate Real-time processing [141]
Drill Horizontal Yes Yes Good Interactive analytics [142]
HPC Vertical Limited Yes Very good Batch, stream, and interactive [121,

122]

5.2.2 Spark: Spark is a fast, in-memory, open-source big data
processing engine which is designed to overcome the disk I/O limita-
tions of Hadoop [144]. Spark can perform in-memory computations
and allow the data to be cached in memory, thereby eliminating the
Hadoop’s disk overhead limitation for iterative tasks [141]. Spark is
a general engine for large-scale data processing which is up to 100
times faster than Hadoop MapReduce when the data can fit in the
memory and up to 10 times faster when data resides on the disk.

5.2.3 STORM: Apache Storm is also an open source distributed
real-time computation system, that can reliably process unbounded
streams of data [141, 145]. It is scalable, fault-tolerant, and easy to
set up and operate, thereby having several use cases, including real-
time analytics, online machine learning, and real-time computation.

5.2.4 Apache Drill: Apache Drill is an open source software
framework that supports data-intensive distributed applications for
interactive analysis of large-scale datasets [142]. Drills is able to
scale 10,000+ servers and process petabytes of data and trillions
of records within seconds. In addition, Drill can discover schemas
on-the-fly, thereby delivering self-service data exploration capabili-
ties on data stored in multiple formats in files or databases. Drill can
seamlessly integrate with several visualization tools, thereby making
big-data platform interactive.

5.2.5 High Performance Computing: HPC is a vertical scale
up platform for big data processing which consists of a powerful
machine with thousands of cores. Due to high quality hardware
implementation, fault tolerance in HPC systems is not problematic
as hardware failures are extremely rare [121]. Even though HPC sys-
tem can process terabytes of data, they are not scalable as horizontal
processing platforms. Moreover, initial deployment and scaling costs
are higher compared to other horizontal scale-out platforms [122].

6 Application of Big Data in Smart Grids

In smart grids, the big data coming from several sources carry valu-
able information, and the cross fertilization of the heterogeneous
data sources can unlock several novel applications beneficial to all
the stakeholders, i.e., electric utilities, grid operators, customers,
etc., for planning and operational decisions. The big data has poten-
tial to a) improve reliability and resiliency of power grid, b) deliver
optimum asset management and operations, c) improve decision
making by sharing information/data, and d) to support rapid analysis
of extremely large data sets for performance improvement. However,
the current trend in smart grid is that the smart meter big data is
primarily used for demand response, load forecasting, baseline esti-
mation, and load clustering type of applications [146–150], while
the application of PMU big data is focused mainly on transmission
grid visualization, state estimation, and dynamic model calibration
[61, 83, 151]. Fig. 16 shows some of the potential applications of big
data in smart grid useful for various stakeholders. Next, we summa-
rize the recent applications sought from the big data in smart grids.

6.1 Energy Management Related Applications

Two-way flow of power and information in smart grid provides
opportunities to small scale consumers, energy producers, and distri-
bution system operators to take active part in grid management and

ancillary services. In order to support energy management in real-
time, we have to efficiently and intelligently process large volumes
of data in smart grids [78]. Improved forecasting tools for energy
resources and loads, improved demand response (DR) methods, effi-
cient data management framework, and data analytics are critical
to enable the energy management for the optimized operation of
power grids. Reference [152] proposed various steps in extracting
information from big data for energy management in smart grids. In
particular, this work identifies need of methods for dimensionality
reduction of data (e.g., Random Projection method), algorithms that
can extract load patterns from large-scale data set (e.g., K-means and
ANNs), design of machine learning algorithms for improved fore-
casting, design of data compression for low memory requirements,
development of scalable and distributed computing architecture for
real-time performance, and so on. Big data is used in energy man-
agement of large public bindings in [153]. Deep learning based
household level load forecasting method is developed in [98], which
is one of the inputs needed for household level energy management
systems. A big data enabled EV charging scheme is proposed in
[154].

DR, which is the key component of any energy management tools,
is one of the drivers of big data analytics in smart grid. Utilities
use various DR techniques to enhance customers’ active engage-
ment in grid management [155]. Through large amount of data
obtained from smart meter and home devices, utilities not only can
get near real-time information of consumption, but also can develop
proper incentives and operational strategies to better utilize behind
the meter energy resources [156]. Big data analytics can dynami-
cally classify and categorize consumer consumption behaviors and
electrical characteristics that can help utilities to make better oper-
ational decisions [146, 147]. Reference [157] develops methods to
cluster energy customers based on time-series data collected from
smart meters with an objective to identify suitable customers for
DR programs. In [78], authors proposed to use smart meter data
and applied time-based Markov Model and clustering algorithms to
identify end users’ energy consumption dynamics, which is crucial
for the DR tools. Reference [18] identifies the significance of high-
granular load forecasting and customer consumer behavior modeling
using big data useful for distribution grid operation and planning.
Demand Response on smart cities utilizing big data is developed
in [158]. Similarly, energy consumption pattern in big cities are
identified using big data techniques in [159].

6.2 Improvement of Smart Grid Reliability and Stability

In [160], data collected from Twitter is used to identify and locate
the power outage, which could help enhance power system reliabil-
ity. This is an interesting application of big data techniques applied to
smart grids based on data collected from social media (non-electrical
data). Reference [161] listed significance of GIS, GPS, and weather
data in outage management. Application of SCADA big data for
voltage instability detection is discussed in [162], which seems
promising over traditional snapshot approach. Similarly, PMU big
data could be used for stability margin prediction [162] and real-time
asset health monitoring [61]. Reference [163] used PMU big data
and Core vector machine to assess transient stability margin. PMU
based data-driven mode oscillation detection is proposed in [164].
A PMU-based fault location technique is proposed in [85]. The big
data methods proposed in [84, 160–164] help improve reliability and
stability of power grids. An event detection application is developed
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Fig. 16: Some of the potential applications of big data analytics in smart grids.

in [165] utilizing big data collected from µPMUs. Anomaly detec-
tion method on power grid is developed in [166], which is based
on big data collected from smart meters. In addition, big data can
greatly benefit applications such as transmission constraint manage-
ment or generator performance monitoring for improving market and
operational efficiency.

6.3 Visualization

Advanced visualization is one of the key application area of big data
analytics that can improve the overall assessment of smart grids.
Big data analytics with the visualization technologies is used for
monitoring real-time power system status as well as accurate grid
connectivity information. Conventionally, various visualization tech-
niques such as single line diagram, 2D, and 3D charts/plots were
used for grid visualization. However, due to increased number of
variables and their interdependencies, advanced visualization tech-
niques are often required for the big data visualization in smart grid.
Scatter diagram, parallel coordinate, and Andrew curve in combi-
nation with the real-time monitoring can resolve the problem of
high dimensional data visualization [147]. Commercial tools, such
as Real Time Dynamics Monitoring System (RTDMS), are avail-
able for visualization using PMU big data [151]. RTDMS provides
several visualization options including dashboard display for situ-
ational awareness, voltage angle contour plots, voltage magnitude
plot, frequency plot, oscillatory mode plot, etc.

6.4 Parameter/State Estimation

Parameter and state estimations are essential for power system
planning, operation, and control. Estimations are used for several
applications including operational resource planning, real-time sys-
tem monitoring, and resilient control design against cyber- and/or
physical-attacks [167]. The availability of huge amount of data
within the smart grid framework provides challenges as well as
opportunities for state estimation. Due to availability of large dataset
from various sensors and intelligent devices across the grid, system
will be more visible, thereby having better and more accurate state
estimation. However, due to introduction of large number of active
nodes, power system optimization problems become mix-integer,

nonlinear, and non-convex, thereby making the system computa-
tionally challenging [167]. Through the improved state estimation
realized by using big data, we can analyze large datasets (e.g.,
number, type, sequences) of post-contingency conditions and take
corrective actions against a set of predefined contingencies [27, 168].
For instance, the trend in Volt/VAr regulation is to utilize a large
mix of voltage regulation resources (e.g. smart inverters, solid state
transformers, on-load tap changers, voltage regulators, STATCOMs)
on the feeder. The coordination of these resources will require real
time monitoring and predictive tools to optimize the utilization of
these resources and lead to reduced operational costs and increase
the power quality and reliability of the system. Reference [169] pro-
posed a model calibration of distribution feeders based on big data
collected from AMI and photovoltaic micro-inverters. References
[170–172] used data-driven approach to estimate the behind-the-
meter solar power, which are generally not visible from control
centers. A PMU based state evaluation method is developed in [173].

6.5 Applications to Cyber-Physical Systems

Since smart grid is a critical infrastructure, any cyber or physical vul-
nerabilties could lead to widespread impacts. Conventionally power
system planner used to perform contingency analysis to provide
resiliency under sudden disturbances against system faults and/or
natural disasters [174]. Due to close interdependencies between
power and communication infrastructure, the future grids subject
to increased risk of malacious attacks. However, most of the exist-
ing power system were not designed by accounting cyber-security.
Unlike random nature of equipment fault/failure probability dis-
tribution, cyber-attacks are normally coordinated and deliberately
targeted to most critical components of the energy system. Such
structured attacks can lead to cascading failures in the system. There-
fore, tight cyber-physical coupling is necessary to extend power
system security into both cyber and physical attacks [175–178]. Inte-
gration of big data analytics provides an excellent opportunity to
timely identify such malacious attacks and prevent the system from
huge damages.
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7 Future Research Directions

As mentioned in the preceding sections, big data analytics in smart
grid is more than just the technical challenges of handling big data.
Due to very complex nature of electrical grid, it has close inter-
dependencies with other critical infrastructure (e.g., transportation,
gas, water, heating, IoT). The following are future directions to
effectively deploy big data in electric utility.

7.1 Interoperability

Even though there are a few standard information models for
smart grid interoperability (e.g., IEC 61850, IEC 61850-90-7, IEC
61970/61968, IEEE 1815, IEEE 2030.5), there is no standard infor-
mation models to describe interoperability among various big data
analytics platforms, architecture, and their operational integrations
with utility decision frameworks. Furthermore, storage, usage, dis-
semination, and sharing of data with utility operational frameworks
are not unified. Interoperability between various cloud computing
service vendors is necessary. Therefore, extensive R&D is needed
to develop interoperability among different devices, network opera-
tions, data analytics platforms, big data architecture, data repository,
and information models.

7.2 Need of Standards and Regulatory Frameworks

Currently, there are no established standards and regulatory frame-
works for sharing data among utilities, weather corporation, and
other energy systems (e.g., transportation, oil, gas sectors). Reg-
ulatory compliance as a whole may need an extensive overhaul
to accommodate the impact of big data applications and also the
cybersecurity aspects of such applications. First, technical standards
should be established to maximize the value of big data as well
as to ensure data exchanges among different entities are feasible
and meaningful. Subsequently, regulatory framework should also
be establish to bind the entities with legal rules and regulations in
terms of data sharing. In addition, an impartial third party is also
needed in order to make fair estimation and justification of the costs
associated with big data deployments for regulated markets and
different entities. Therefore, efforts from professional communities
should be invested in establishing standards for data sharing among
platforms/architectures, and identifying the elements of regulatory
frameworks to bind utilities in deploying big data.

7.3 Big Data Architectures/Platforms

Currently, there exists no standardized architectures and platforms
for deploying big data analytics to smart grid. Most of the present
big data platforms in utility industries rely on cloud computing. As
storing and processing of big data within the smart grid requires
efficient platforms that are scalable, self-organizing, and adaptive –
one of the key solutions is to deploy efficient distributed platforms,
such as Hadoop, Cassandra, and Hive [179] that are appropriate for
big data analytics. Therefore, holistic and modular energy big data
analytics architectures, as well as corresponding computational plat-
forms, are needed to address current barriers within smart grid big
data analytics.

7.4 Utilization of Heterogeneous Data

Existing big data applications in smart grids are based on single data
type, primarily smart meter or PMU data. However, future applica-
tions shall utilize multiple sources of big data (such as data weather,
traffic, oil and gas industry, social media, etc.), which can help in
assessing the dependence of critical infrastructure on power grids.
Therefore, data hubs should be created and be readily accessible to
advance resiliency of critical infrastructures. Future grid applications
shall utilize these heterogeneous big data set, which could uncover
crucial hidden information otherwise not possible from electrical
measurements only. A database like Pecan Street Dataport [180],
and GE datalake [44] would be lot valuable to research community
to uncover interdependencies among the critical infrastructure.

7.5 Integration with Real-time Control, Operation, and
Certification

Most of the existing big data deployments to electric utilities have
been used for system monitoring and operational planning. How-
ever, this is limiting the scope of the big data analytics to electric
utility industry. Big data analytics should be integrated into real-
time control [48] and operational module so as to provide real-time
situational awareness and informed predictive decisions. However,
processing of massive data in real time has inherent computational
and scalability issues; therefore, these should be the research focus
moving forward.

With the diversity of big data applications to the electric utili-
ties, it will be certainly tedious to generate certification programs
and operator training certifications to ensure compliance with stan-
dards and regulations. Certification mechanism and institutes need
harmonization of big data applications which is currently a tremen-
dous void in the electric utility business. The translation of big data
applications to electric utility reliability and resilience requirements
also needs to be studied and suitable mechanisms of reporting have
to be developed and deployed with reasonable confidence. Finally,
the ownership of data across multiple ownership models and also
customer privacy need to be understood and established under the
regulatory framework.

7.6 Advanced Computational Analytics

Because of huge volume of smart grid data, distributed and parallel
intelligence is normally needed to effectively address data com-
putation and handling challenges. Since distributed computing and
parallel intelligence are effective for addressing local grid issues and
challenges, they need some sort of coordination to preserve global
visibility. Therefore, effective distributed intelligence and coordina-
tion algorithms should be developed. R&D on advanced approaches,
such as metamodeling, dimensionality reduction, edge computing
should be done to reduce the computational and communication
burdens [7].

7.7 Integration with Advanced Visualization

Existing smart energy big data analytics schemes do not incorporate
visualization as an integral part. As the key benefit of big data analyt-
ics is to help utilities in taking actions based on real-time situational
intelligence obtained from the data analytics, integration of advanced
visualization with data analytics is needed. Since most of the current
analytics are informative and instructive, it requires the grid opera-
tors to take intuitive decisions. Integration of advanced visualization
together with automated operation provides directive information to
the operators and avoids the need of intuitive decision. Therefore, co-
design of smart grid big data analytics and advanced visualization
mechanisms can produce a seamless integrated framework which
can reduce security risk and help to take effective decisions.

7.8 Advancements in Algorithms

Comprehensive analysis of big data for exploiting buried informa-
tion and correlations among varied data sources is very difficult.
Therefore, advanced artificial intelligence technique such as deep
machine learning (ML) is essential not only to exploit fine-grained
patterns within the data, but also to make the decision process less
reliance on human interference [181]. However, due to increased
deployments of intelligent devices in electric grids, and interde-
pendencies of electrical network with other critical infrastructure
(e.g., gas, water, transportation), smart grid data will continue to
grow in volume, variety and veracity. Therefore, scalability of the
ML models is very critical. Moreover, since timely and accurate
capture of hidden information is key to the operation of electrical
infrastructure, accuracy and computational efficiency play key roles.
Therefore, future R&D efforts on ML should focus on scalability,
computational efficiency, and accuracy.
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7.9 Value Proposition to Different Stakeholders

For electric utility industry seeking to implement big data solution,
a structured business model is necessary to fulfill financial goals and
requirements of all stakeholders. Since the success of big data ana-
lytics in utility industry is contingent upon active participation of
electric utilities, customers, and system operators, identifying rev-
enue streams and development of proper business models are critical
to the success of big data deployment to smart grid. More impor-
tantly, cost associated with the adoption of big data to all stakehold-
ers should be justified and accepted across the broad stakeholders
that includes policy makers, regulators, utilities, and the consumer.
Therefore, future research should focus on techno-economic studies
to quantify technical and economic values of big data to the elec-
tric utilities, system operators, and customers. In addition, workforce
training will be required for data analysis interpretation as well as to
better understand the capability and limitations of these tools. Thus,
access to data will just provide return to utility investments when
professionals fully understand the capabilities and tools available,
requiring changes in undergraduate and graduate curricula to include
data science topics for future power engineers.

8 Conclusion

This paper presented a comprehensive state-of-the-art review of big
data analytics for smart grids. First, utility and industry perspec-
tives on current status of big data implementation in power system
is presented. Key technical, security, and regulatory challenges for
deploying big data to smart grid are identified. Value proposition
of big data analytics to key stakeholders (e.g., consumers, electric
utilities, and system operators) is described with respect to oper-
ational integration of big data to utility’s decision frameworks. In
addition, future research directions for deploying big data analytics
to the power grid are discussed from academia, utility, and indus-
try perspectives. This paper provides detailed information and items
to consider for utilities looking to apply big data analytics to, and
details insights on how utilities can utilize big data analytics to
develop new business models and revenue streams. Furthermore, this
study will unveil interdependencies among various critical infras-
tructure and help utilities to make right investment and operational
decisions at right time and right locations.
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